metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triaqua-1 κ O,2 κ^2 O-bis(2,2'-bipyridine)-1 κ^2 N,N';2 κ^2 N,N'-chlorido-1 κ Cl- μ terephthalato-1:2 κ^2 O¹:O⁴-dicopper(II) nitrate monohydrate

Yang Liu,* Yong-Lan Feng and Dai-Zhi Kuang

Key Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China

Correspondence e-mail: louiyang@mail.nankai.edu.cn

Received 7 April 2012; accepted 3 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.052; wR factor = 0.172; data-to-parameter ratio = 16.9.

In the binuclear title compound, $[Cu_2(C_8H_4O_4)Cl(C_{10}H_8N_2)_2-(H_2O)_3]NO_3\cdot H_2O$, the two crystallographically independent Cu^{II} ions have similar coordination environments. One of the Cu^{II} ions has a square-pyramidal arrangement, which is defined by a water molecule occupying the apical position, with the equatorial ligators consisting of two N atoms from a 2,2'-bipyridine molecule, one carboxylate O atom from a terephthalate ligand and one O atom from a water molecule. The other Cu^{II} ion has a similar coordination environment, except that the apical position is occupied by a chloride ligand instead of a water molecule. An $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen-bonded three-dimensional network is formed between the components.

Related literature

For related structures, see: Lo *et al.* (2000); Xu *et al.* (2010). For background on the use of terephthalic acid and bipyridine as ligands in metal–organic frameworks, see, respectively: Wang *et al.* (2010); Zhang *et al.* (2010).

Experimental

Crystal data

[Cu₂(C₈H₄O₄)Cl(C₁₀H₈N₂)₂- $\beta = 83.61 \ (3)^{\circ}$ $(H_2O)_3]NO_3 \cdot H_2O$ $\gamma = 64.90 \ (3)^{\circ}$ $\dot{V} = 1547.1$ (5) Å³ $M_r = 773.08$ Triclinic, $P\overline{1}$ Z = 2Mo $K\alpha$ radiation a = 10.155 (2) Å $\mu = 1.53 \text{ mm}^{-1}$ b = 11.204 (2) Å c = 15.454 (3) Å T = 293 K $0.20 \times 0.20 \times 0.20$ mm $\alpha = 76.34 (3)^{\circ}$

Data collection

```
Rigaku R-AXIS RAPID IP
area-detector diffractometer
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 1998))
T_{\rm min} = 0.750, T_{\rm max} = 0.750
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 412 parameters $wR(F^2) = 0.172$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.71$ e Å $^{-3}$ 6973 reflections $\Delta \rho_{min} = -0.64$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$05-H5A\cdots 04$ $06-H6A\cdots 02$ $06-H6B\cdots 08^{i}$ $06-H6B\cdots 010^{i}$ $07-H7A\cdots C11^{ii}$ $07-H7A\cdots 010^{iii}$	0.85 0.86 0.86 0.86 0.85 0.85	2.00 1.91 2.34 2.14 2.53 2.06	2.534 (4) 2.511 (4) 3.079 (4) 2.923 (4) 3.325 (2) 2.869 (3)	120 126 145 151 156 157
$011 - H11A \cdots 08$ $011 - H11A \cdots 09$ $011 - H11A \cdots 09$ $011 - H11B \cdots Cl1^{iv}$	0.86 0.86 0.84	2.26 2.42 2.39	$\begin{array}{c} 2.809(3) \\ 3.119(3) \\ 3.038(3) \\ 3.227(2) \end{array}$	176 129 173

Symmetry codes: (i) x, y - 1, z + 1; (ii) x + 1, y - 1, z; (iii) -x + 1, -y, -z + 1; (iv) -x, -y + 2, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

15250 measured reflections

 $R_{\rm int} = 0.041$

6973 independent reflections

4651 reflections with $I > 2\sigma(I)$

This work was supported by the Open Research Fund of the Key Laboratory in Hunan Province (grant No. 10 K01) and the Doctoral Fund of Hengyang Normal University (grant No. 10B65).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2542).

References

Lo, S. M.-F., Chui, S. S.-Y., Shek, L.-Y., Lin, Z.-Y., Zhang, X.-X., Wen, G.-H. & Williams, I. D. (2000). J. Am. Chem. Soc. 122, 6293–6294. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wang, X.-F., Zhang, Y.-B., Xue, W., Qi, X.-L. & Chen, X.-M. (2010). CrystEngComm, 12, 3834–3839.
- Xu, X.-X., Sang, X.-G., Liu, X.-X., Zhang, X. & Sun, T. (2010). *Transition Met. Chem.* **35**, 501–506.
- Zhang, J., Bu, J.-T., Chen, S.-M., Wu, T., Zheng, S.-T., Chen, Y.-G., Nieto, R. A., Feng, P.-Y. & Bu, X.-H. (2010). Angew. Chem. Int. Ed. Engl. 49, 8876–8879.

supplementary materials

Acta Cryst. (2012). E68, m746-m747 [doi:10.1107/S1600536812019848]

Triaqua-1 κ O,2 κ^2 O-bis(2,2'-bipyridine)-1 κ^2 N,N';2 κ^2 N,N'-chlorido-1 κ Cl- μ -terephthalato-1:2 κ^2 O¹:O⁴-dicopper(II) nitrate monohydrate

Yang Liu, Yong-Lan Feng and Dai-Zhi Kuang

Comment

The assembly of mixed-ligand coordination polymers attracted intense attention not only because of their intriguingly complicated architecture, but also potential applications in adsorption, separation(Lo *et al.* 2000), magnetism(Xu *et al.* 2010), and so on. A feasible strategy is to resort to the synergetic coordination of the O-containing and the N-containing ligands. As a rigid and polydentate carboxylato ligand, terephthic acid is extensively used to assembly porous metal-organic-frameworks (Wang *et al.* 2010), while bipyridine ligand is a admirable ancillary ligand and has a conjugate system (Zhang *et al.* 2010). Herein, we synthesized a novel copper complex constructed by terephthalic acid in combination with 2,2'-bipyridine as ancillary ligand.

X-ray diffraction analysis reveals that the title complex crystallizes in the Triclinic group *P*-1. In a assymmetric unit, there are two crystallographically independent copper(II) ions, two terephthalic, two 2,2'-bipyridine moleculars, one nitrate anion, three coordination water and one lattice water molecular. The Cu1(II) ion is a five-coordinated square-pyramidal arrangement which is defined by one coordinated water molecular occupying the apical position, while the equatorial plane are furnished by two nitrogen atoms from a 2,2'-bipyridine molecular, one carboxylate oxygen atom from terephthlic acid and one oxygen atom from a water molecular. The Cu2(II) ion has a similar coordination enviroment with the Cu1(II)ion except for the apical position occupied by one chlorine anion. Two Cu ions link up by one terephthalic ligand. Interestingly, the benzene ring of the terephthalic ligand has a strong π - π interations with the pyridine ring of 2,2'-bipyridine ligand in the adjacent molecular, which has a 3.355 Å distances between the paralleled faces.

Experimental

All chemicals were purchased and used without further purification. A mixture of terephtatic acid (0.5 mmol), 2,2'-bipyridine (0.5 mmol) and CuCl₂2H₂O (1 mmol) was dissolved in 7 ml of distilled water and a drop of HNO₃ was add under stirring. Then the resulting mixture was transfered in a 25 ml of Teflon-lined stainless autoclave at 180 °C for 5 days and then cooled to room temperature. Light-blue block crystals of the title compound was obtained.

Refinement

Accurate unit-cell parameters were determined by a least-squares fit of 2θ values, and intensity data were measured on a rigaku r-axis rapid IP area detector with Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. The intensities were corrected for Lorentz and polarization effects as well as for empirical absorption based on multi-scan technique; all structures were solved by direct methods and refined by full-matrix least-squares fitting on F² by *SHELX97*(Sheldrick, 2008). All non-hydrogen atoms were refined with anisotropic thermal parameters(Sheldrick, 2008).

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO* (Rigaku, 1998); data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

Coordination environment of Cu in the complex with hydrogen atoms remove d for the clarity. Displacement ellipsoids are drawn at the 30% probability level.

Triaqua-1 κ O,2 κ ²O-bis(2,2'-bipyridine)- 1 κ ²N,N';2 κ ²N,N'-chlorido-1 κ Cl- μ -terephthalato-1:2 κ ²O¹:O⁴-dicopper(II) nitrate monohydrate

Crystal data

$[Cu_{2}(C_{8}H_{4}O_{4})Cl(C_{10}H_{8}N_{2})_{2}(H_{2}O)_{3}]NO_{3}\cdot H_{2}O$ $M_{r} = 773.08$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 10.155 (2) Å b = 11.204 (2) Å c = 15.454 (3) Å a = 76.34 (3)° $\beta = 83.61$ (3)° $\gamma = 64.90$ (3)° V = 1547.1 (5) Å ³	Z = 2 F(000) = 788 $D_x = 1.660 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9787 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 1.53 \text{ mm}^{-1}$ T = 293 K Block, blue $0.20 \times 0.20 \times 0.20 \text{ mm}$
Data collection Rigaku R-AXIS RAPID IP area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (Allen <i>et al.</i> , 1991) $T_{\min} = 0.750, T_{\max} = 0.750$	15250 measured reflections 6973 independent reflections 4651 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -12 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.172$	neighbouring sites
S = 1.04	H-atom parameters constrained
6973 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0996P)^2]$
412 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.64 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7820 (5)	-0.0785 (4)	0.9109 (3)	0.0584 (11)
H1	0.7098	-0.0158	0.8713	0.070*
C2	0.9029 (5)	-0.0580 (5)	0.9167 (3)	0.0695 (13)
H2	0.9134	0.0171	0.8812	0.083*
C3	1.0111 (5)	-0.1505 (5)	0.9762 (4)	0.0672 (13)
H3	1.0948	-0.1383	0.9812	0.081*
C4	0.9918 (4)	-0.2604 (5)	1.0278 (3)	0.0582 (11)
H4	1.0615	-0.3226	1.0690	0.070*
C5	0.8687 (4)	-0.2772 (4)	1.0176 (2)	0.0445 (9)
C6	0.8399 (4)	-0.3956 (4)	1.0644 (2)	0.0433 (9)
C7	0.9351 (4)	-0.5015 (4)	1.1251 (3)	0.0529 (10)
H7	1.0217	-0.5010	1.1389	0.063*
C8	0.8985 (5)	-0.6078 (4)	1.1646 (3)	0.0604 (12)
H8	0.9589	-0.6789	1.2068	0.072*
C9	0.7713 (5)	-0.6070 (5)	1.1406 (3)	0.0622 (12)
H9	0.7459	-0.6784	1.1660	0.075*
C10	0.6826 (5)	-0.5008 (4)	1.0793 (3)	0.0567 (11)
H10	0.5975	-0.5014	1.0631	0.068*
C11	0.3524 (4)	-0.0015 (4)	0.8602 (2)	0.0437 (9)
C12	0.2979 (4)	0.1371 (4)	0.8007 (2)	0.0409 (8)
C13	0.3831 (4)	0.2104 (4)	0.7815 (2)	0.0440 (9)
H13	0.4748	0.1742	0.8063	0.053*
C14	0.3321 (4)	0.3363 (4)	0.7260 (2)	0.0469 (9)
H14	0.3890	0.3852	0.7146	0.056*
C15	0.1970 (4)	0.3906 (4)	0.6871 (2)	0.0401 (8)
C16	0.1122 (4)	0.3172 (4)	0.7056 (2)	0.0447 (9)

H16	0.0212	0.3530	0.6797	0.054*
C17	0.1612 (4)	0.1924 (4)	0.7615 (2)	0.0460 (9)
H17	0.1033	0.1445	0.7735	0.055*
C18	0.1432 (4)	0.5279 (4)	0.6280 (2)	0.0439 (9)
C19	-0.1753 (5)	1.0261 (4)	0.4078 (3)	0.0572 (11)
H19	-0.0873	1.0215	0.4236	0.069*
C20	-0.2627 (5)	1.1375 (5)	0.3472 (3)	0.0660 (12)
H20	-0.2348	1.2078	0.3237	0.079*
C21	-0.3912 (5)	1.1430 (5)	0.3221 (3)	0.0628 (12)
H21	-0.4497	1.2157	0.2800	0.075*
C22	-0.4321 (4)	1.0399 (4)	0.3602 (3)	0.0562 (11)
H22	-0.5196	1.0425	0.3452	0.067*
C23	-0.3402 (4)	0.9309 (4)	0.4219 (2)	0.0444 (9)
C24	-0.3718 (4)	0.8138 (4)	0.4664 (3)	0.0471 (9)
C25	-0.4963 (4)	0.7998 (5)	0.4544 (3)	0.0578 (11)
H25	-0.5672	0.8660	0.4154	0.069*
C26	-0.5148(5)	0.6861 (5)	0.5011 (4)	0.0688 (13)
H26	-0.5976	0.6741	0.4933	0.083*
C27	-0.4091 (5)	0.5916 (5)	0.5591 (3)	0.0707 (14)
H27	-0.4195	0.5146	0.5911	0.085*
C28	-0.2876 (5)	0.6112 (4)	0.5696 (3)	0.0612 (11)
H28	-0.2173	0.5473	0.6099	0.073*
C11	-0.17909 (11)	0.86425 (11)	0.67434 (7)	0.0570 (3)
Cu1	0.59529 (5)	-0.23100 (4)	0.95432 (3)	0.04425 (17)
Cu2	-0.09653 (5)	0.75958 (5)	0.53220 (3)	0.04651 (17)
N1	0.7627 (3)	-0.1860 (3)	0.9601 (2)	0.0457 (7)
N2	0.7162 (3)	-0.3949 (3)	1.0418 (2)	0.0450 (7)
N3	-0.2673 (3)	0.7199 (3)	0.5236 (2)	0.0462 (7)
N4	-0.2143 (3)	0.9249 (3)	0.4442 (2)	0.0473 (8)
N5	0.3000 (4)	0.6385 (4)	0.1813 (2)	0.0597 (10)
01	0.4807 (3)	-0.0500 (3)	0.88775 (19)	0.0536 (7)
O2	0.2685 (3)	-0.0594(3)	0.8763 (2)	0.0637 (9)
03	0.0152 (3)	0.5775 (3)	0.59884 (19)	0.0547 (7)
04	0.2273 (3)	0.5869 (3)	0.6131 (2)	0.0639 (9)
05	0.0782 (3)	0.7958 (3)	0.5013 (2)	0.0637 (9)
O6	0.4297 (3)	-0.2800 (3)	0.9705 (2)	0.0651 (9)
07	0.6810 (2)	-0.31174 (19)	0.82969 (13)	0.0757 (9)
08	0.3190 (2)	0.73970 (19)	0.16260 (13)	0.1204 (16)
09	0.2562 (2)	0.60351 (19)	0.25133 (13)	0.183 (3)
O10	0.3218 (2)	0.57418 (19)	0.12290 (13)	0.1219 (16)
011	0.1857 (2)	0.84194 (19)	0.33688 (13)	0.1176 (16)
H5A	0.1636	0.7593	0.5220	0.141*
H5B	0.0846	0.7747	0.4504	0.141*
H6A	0.3714	-0.2463	0.9265	0.141*
H6B	0.3798	-0.2936	1.0171	0.141*
H7A	0.7169	-0.2841	0.7805	0.141*
H7B	0.6878	-0.3903	0.8283	0.141*
H11A	0.2265	0.8103	0.2905	0.141*
H11B	0.1831	0.9200	0.3289	0.141*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
C1	0.054 (2)	0.057 (3)	0.072 (3)	-0.033 (2)	-0.004 (2)	-0.006 (2)
C2	0.069 (3)	0.069 (3)	0.090 (3)	-0.047 (3)	0.006 (3)	-0.020(3)
C3	0.045 (2)	0.076 (3)	0.100 (4)	-0.035(2)	0.006 (2)	-0.038(3)
C4	0.038(2)	0.076 (3)	0.068 (3)	-0.022(2)	-0.0039(19)	-0.031(2)
C5	0.0328(19)	0.053(2)	0.050(2)	-0.0153(16)	0.0002 (15)	-0.0207(18)
C6	0.0358(19)	0.052(2)	0.0386 (18)	-0.0123(16)	-0.0024(15)	-0.0136(17)
C7	0.040(2)	0.057(2)	0.051 (2)	-0.0039(18)	-0.0099(17)	-0.018(2)
C8	0.062(3)	0.052(2)	0.044(2)	-0.002(2)	-0.0144(19)	-0.003(2)
C9	0.069(3)	0.056(3)	0.055(2)	-0.025(2)	-0.007(2)	0.004 (2)
C10	0.057(3)	0.049(2)	0.059(2)	-0.025(2)	-0.012(2)	0.008 (2)
C11	0.040(2)	0.0400(19)	0.0444(19)	-0.0133(16)	-0.0021(15)	-0.0018(17)
C12	0.040(2)	0.0375 (18)	0.0428 (19)	-0.0143(15)	-0.0020(15)	-0.0071(16)
C13	0.0378 (19)	0.0365 (19)	0.052 (2)	-0.0103(15)	-0.0084(16)	-0.0046(17)
C14	0.047 (2)	0.046 (2)	0.051(2)	-0.0242(17)	-0.0042(17)	-0.0021(18)
C15	0.0408(19)	0.0366(18)	0.0383(18)	-0.0124(15)	-0.0001(15)	-0.0063(16)
C16	0.0362(19)	0.040(2)	0.051 (2)	-0.0108(15)	-0.0090(16)	-0.0032(17)
C17	0.045 (2)	0.044(2)	0.051(2)	-0.0223(17)	-0.0038(17)	-0.0056(18)
C18	0.038(2)	0.040(2)	0.048(2)	-0.0117(16)	-0.0022(16)	-0.0053(17)
C19	0.054 (2)	0.055(2)	0.058 (2)	-0.025(2)	-0.0182(19)	0.009 (2)
C20	0.075 (3)	0.056 (3)	0.057 (3)	-0.023(2)	-0.012(2)	0.003(2)
C21	0.059 (3)	0.058 (3)	0.050 (2)	-0.007(2)	-0.017(2)	0.002 (2)
C22	0.043 (2)	0.064 (3)	0.052 (2)	-0.0077(19)	-0.0133(18)	-0.016(2)
C23	0.038 (2)	0.053 (2)	0.0393 (18)	-0.0120(17)	-0.0017(15)	-0.0176(17)
C24	0.039 (2)	0.056 (2)	0.049 (2)	-0.0161 (17)	0.0027 (16)	-0.0249 (19)
C25	0.038 (2)	0.076 (3)	0.066 (3)	-0.020(2)	-0.0041(19)	-0.030(2)
C26	0.044 (3)	0.081 (3)	0.096 (4)	-0.034(2)	0.005 (2)	-0.033(3)
C27	0.069 (3)	0.067 (3)	0.094 (4)	-0.046 (3)	0.015 (3)	-0.022(3)
C28	0.055 (3)	0.053 (2)	0.077 (3)	-0.027(2)	0.002 (2)	-0.008(2)
Cl1	0.0546 (6)	0.0614 (6)	0.0501 (5)	-0.0198 (5)	-0.0087 (4)	-0.0068 (5)
Cul	0.0352 (3)	0.0418 (3)	0.0544 (3)	-0.0203(2)	-0.0121 (2)	0.0060 (2)
Cu2	0.0362 (3)	0.0433 (3)	0.0569 (3)	-0.0192 (2)	-0.0132(2)	0.0064 (2)
N1	0.0398 (17)	0.0490 (18)	0.0527 (18)	-0.0235 (14)	-0.0049 (14)	-0.0068 (15)
N2	0.0414 (17)	0.0428 (17)	0.0480 (17)	-0.0185 (14)	-0.0081 (13)	0.0015 (15)
N3	0.0364 (16)	0.0481 (18)	0.0557 (18)	-0.0184 (14)	-0.0024 (14)	-0.0110 (16)
N4	0.0433 (18)	0.0473 (18)	0.0467 (17)	-0.0185 (14)	-0.0095 (14)	0.0022 (15)
N5	0.063 (2)	0.054 (2)	0.061 (2)	-0.0309 (19)	0.0025 (18)	0.0004 (19)
01	0.0440 (15)	0.0427 (15)	0.0704 (18)	-0.0214 (12)	-0.0156 (13)	0.0087 (14)
O2	0.0460 (16)	0.0582 (18)	0.080 (2)	-0.0285 (14)	-0.0166 (14)	0.0198 (16)
03	0.0453 (15)	0.0418 (14)	0.0716 (18)	-0.0203 (12)	-0.0163 (13)	0.0097 (14)
04	0.0499 (17)	0.0563 (17)	0.080 (2)	-0.0284 (14)	-0.0187 (15)	0.0174 (16)
05	0.0411 (15)	0.0654 (19)	0.078 (2)	-0.0273 (14)	-0.0164 (14)	0.0138 (16)
O6	0.0430 (15)	0.0609 (18)	0.089 (2)	-0.0323 (14)	-0.0151 (14)	0.0168 (17)
07	0.096 (3)	0.067 (2)	0.073 (2)	-0.0429 (19)	-0.0019 (18)	-0.0145 (17)
O8	0.142 (4)	0.080 (3)	0.156 (4)	-0.064 (3)	0.007 (3)	-0.027 (3)
09	0.225 (7)	0.198 (6)	0.123 (4)	-0.118 (6)	0.055 (4)	0.004 (4)
O10	0.114 (4)	0.109 (4)	0.155 (5)	-0.040 (3)	-0.007 (3)	-0.060 (3)
011	0.174 (5)	0.100 (3)	0.095 (3)	-0.079 (3)	0.039 (3)	-0.027 (3)

Geometric parameters (Å, °)

C1—N1	1.342 (5)	C20—C21	1.374 (6)
C1—C2	1.358 (6)	C20—H20	0.9300
C1—H1	0.9300	C21—C22	1.373 (6)
C2—C3	1.391 (7)	C21—H21	0.9300
C2—H2	0.9300	C22—C23	1.397 (5)
C3—C4	1.377 (6)	C22—H22	0.9300
С3—Н3	0.9300	C23—N4	1.330 (5)
C4—C5	1.371 (5)	C23—C24	1.476 (5)
C4—H4	0.9300	C24—N3	1.355 (5)
C5—N1	1.358 (5)	C24—C25	1.375 (6)
C5—C6	1.481 (5)	C25—C26	1.385 (6)
C6—N2	1.338 (5)	C25—H25	0.9300
C6—C7	1.388 (5)	C26—C27	1.370 (7)
C7—C8	1.382 (6)	C26—H26	0.9300
С7—Н7	0.9300	C27—C28	1.374 (6)
C8—C9	1.379 (6)	C27—H27	0.9300
C8—H8	0.9300	C_{28} N3	1 342 (5)
C9-C10	1 368 (6)	C28—H28	0.9300
С9—Н9	0.9300	Cl1—Cu2	2 6222 (14)
C10-N2	1 355 (5)	Cu101	1,950(3)
C10 - H10	0.9300	Cu106	1.954 (3)
$C_{11} = 0^{2}$	1 246 (4)	Cu1—N1	1 983 (3)
$C_{11} = 0_1$	1.260(4)	Cu1—N2	1 997 (3)
C11-C12	1.200 (1)	Cu107	2251(2)
C12 - C13	1 393 (5)	$Cu^2 - O^3$	1.953(3)
C12 - C17	1.393(5)	Cu2-05	1.967 (3)
C12 - C14	1 379 (5)	Cu2—N3	1 989 (3)
C13—H13	0.9300	Cu2—N4	2,001,(3)
C14 - C15	1 385 (5)	N5-09	1.167(4)
C14—H14	0.9300	N5-08	1 194 (4)
C15-C16	1 392 (5)	N5-010	1 230 (5)
C15 - C18	1.392(5) 1.495(5)	05—H5A	0.8491
C16-C17	1.175 (5)	O5—H5B	0.8602
C16—H16	0.9300	05 H5B 06—H6A	0.8570
C17—H17	0.9300	O6—H6B	0.8543
$C18 \rightarrow 04$	1.257(4)	07—H7A	0.8545
$C_{18} = 03$	1.257 (4)	07—H7B	0.8581
C19—N4	1.205(4) 1.337(5)	011—H11A	0.8600
C19-C20	1 384 (6)	011—H11B	0.8431
C19—H19	0.9300		0.0151
	0.9500		
N1—C1—C2	122.5 (4)	N4—C23—C22	121.5 (4)
N1-C1-H1	118.8	N4—C23—C24	114.7 (3)
C2—C1—H1	118.8	C22—C23—C24	123.8 (4)
C1-C2-C3	119.3 (4)	N3—C24—C25	121.7 (4)
C1—C2—H2	120.3	N3—C24—C23	113.7 (3)
C3—C2—H2	120.3	C25—C24—C23	124.5 (4)
C4—C3—C2	118.7 (4)	C24—C25—C26	119.2 (4)
	··· (·)		

С4—С3—Н3	120.6	С24—С25—Н25	120.4
С2—С3—Н3	120.6	С26—С25—Н25	120.4
C5—C4—C3	119.3 (4)	C27—C26—C25	118.8 (4)
C5—C4—H4	120.4	С27—С26—Н26	120.6
C3—C4—H4	120.4	C25—C26—H26	120.6
N1—C5—C4	121.8 (4)	C26—C27—C28	119.7 (4)
N1—C5—C6	113.7 (3)	С26—С27—Н27	120.2
C4—C5—C6	124.5 (4)	С28—С27—Н27	120.2
N2—C6—C7	122.0 (4)	N3—C28—C27	122.0 (4)
N2—C6—C5	114.8 (3)	N3—C28—H28	119.0
C7—C6—C5	123.2 (4)	С27—С28—Н28	119.0
C8—C7—C6	118.6 (4)	01—Cu1—O6	92.65 (12)
С8—С7—Н7	120.7	O1—Cu1—N1	91.80 (12)
С6—С7—Н7	120.7	06—Cu1—N1	170.29 (13)
C9—C8—C7	119.1 (4)	O1—Cu1—N2	167.42 (13)
С9—С8—Н8	120.5	06—Cu1—N2	92.88 (12)
C7—C8—H8	120.5	N1—Cu1—N2	81.12 (13)
C10-C9-C8	119.8 (4)	01—Cu1—07	92.92 (11)
C10-C9-H9	120.1	06-01-07	95 55 (12)
C8-C9-H9	120.1	N1-Cu1-07	92.84 (11)
N2-C10-C9	121.5 (4)	N2-Cu1-O7	97 78 (11)
N2-C10-H10	119 3	$03-Cu^2-05$	92.61 (12)
C9-C10-H10	119.3	$03 - Cu^2 - N3$	92.51 (12)
02-C11-01	125.6 (3)	$05 - Cu^2 - N3$	162.04(14)
02 - C11 - C12	125.6(3)	$O_3 - C_{112} - N_4$	162.04(14) 167.36(14)
01 - C11 - C12	116.8 (3)	$05-Cu^2-N4$	91 12 (12)
C_{13} C_{12} C_{17}	110.0(3)	$N_3 = C_{12} = N_4$	80.46 (13)
$C_{13} = C_{12} = C_{11}$	110.9(3)	$\Omega_{2}^{2} C_{12}^{2} C_{11}^{11}$	04.28(10)
$C_{12} = C_{12} = C_{11}$	121.3(3) 110.8(3)	$05 - Cu^2 - Cl^2$	94.28 (10)
C1/-C12-C11	119.8(3) 1204(3)	$N_3 = C_{12} = C_{11}$	98.33 (11)
C14 - C13 - C12	120.4 (3)	$N_{4} = C_{12} = C_{11}$	98.21 (10)
$C_{14} = C_{13} = H_{13}$	119.0	N4 - Cu2 - CH	$\frac{97.10(11)}{1184(3)}$
$C_{12} = C_{13} = 1115$	117.0	C1 = N1 = C3	116.4(3)
$C_{13} = C_{14} = C_{13}$	120.0 (3)	$C_1 = N_1 = C_{11}$	120.5(3)
C15 - C14 - H14	119.7	C_{5} N1-Cui	113.3(3)
C13 - C14 - H14	119.7	C6 N2 C10	119.0(3)
C14 - C15 - C10	119.1 (3)	$C_0 = N_2 = C_{u1}$	113.0(2)
C14-C15-C18	119.7 (3)	C10 N2 $C24$	120.0(3)
C16-C15-C18	121.2 (3)	$C_{28} = N_{3} = C_{24}$	118.5 (4)
C1/-C16-C15	120.7 (3)	C_{28} —N3—Cu2	126.0 (3)
C1/-C16-H16	119.6	C_24 —N3—Cu2	115.6 (3)
C15—C16—H16	119.6	C23—N4—C19	119.5 (3)
C16—C17—C12	120.3 (3)	C23—N4—Cu2	115.6 (3)
С16—С17—Н17	119.9	C19—N4—Cu2	124.9 (3)
C12—C17—H17	119.9	09—N5—08	121.9 (4)
04-018-03	125.0 (3)	09—N5—010	120.2 (3)
04—C18—C15	117.4 (3)	08—N5—010	117.8 (3)
03-018-015	117.6 (3)	CII—OI—Cul	128.7 (2)
N4—C19—C20	121.6 (4)	C18—O3—Cu2	128.4 (2)
N4—C19—H19	119.2	Cu2—O5—H5A	133.7

C20-C19-H19	119.2	Cu2—O5—H5B	90.8
C_{21} C_{20} C_{19}	119.3 (4)	H5A05H5B	106.8
$C_{21} = C_{20} = H_{20}$	120.4	Cu1—O6—H6A	115.0
C19 - C20 - H20	120.4	Cu1—O6—H6B	130.8
$C_{22} = C_{21} = C_{20}$	1191(4)	H6A - O6 - H6B	106.7
$C_{22} = C_{21} = C_{20}$	120.5	Cu1 - 07 - H7A	134.4
$C_{22} = C_{21} = H_{21}$	120.5	Cu1 = 07 = H7R	118.9
$C_{20} = C_{21} = H_{21}$	120.5 110.0 (4)	H7A O7 H7B	106.5
$C_{21} = C_{22} = C_{23}$	119.0 (4)		100.5
$C_{21} = C_{22} = H_{22}$	120.5	HIIA—OII—HIIB	107.4
C23—C22—H22	120.3		
N1-C1-C2-C3	-0.6(8)	N2—Cu1—N1—C5	-19(3)
$C_1 = C_2 = C_3$	-0.1(8)	$\Omega_2 = Cu_1 = N_1 = C_2$	-003(3)
$C_1 = C_2 = C_3 = C_4$	0.1(8) 1.4(7)	C7 C6 N2 C10	99.3(3)
$C_2 = C_3 = C_4 = C_5$	1.4(7)	$C_{1} = C_{0} = N_{2} = C_{10}$	0.1(0)
$C_3 = C_4 = C_5 = N_1$	-2.2(0)	C_{3} C_{0} N_{2} C_{10}	178.2 (4)
$C_3 - C_4 - C_5 - C_6$	1/5.6 (4)	$C/-C_0-N_2-C_0$	179.3 (3)
NI-C5-C6-N2	1.0 (5)	C5—C6—N2—Cu1	-2.5 (4)
C4—C5—C6—N2	-177.0(4)	C9—C10—N2—C6	1.0 (7)
N1—C5—C6—C7	179.1 (4)	C9—C10—N2—Cu1	-178.2 (4)
C4—C5—C6—C7	1.1 (6)	O1—Cu1—N2—C6	-53.9 (7)
N2—C6—C7—C8	-1.5 (6)	O6—Cu1—N2—C6	-169.9 (3)
C5—C6—C7—C8	-179.5 (4)	N1—Cu1—N2—C6	2.4 (3)
C6—C7—C8—C9	1.9 (7)	O7—Cu1—N2—C6	94.1 (3)
C7—C8—C9—C10	-0.9 (7)	O1—Cu1—N2—C10	125.3 (5)
C8—C9—C10—N2	-0.6 (7)	O6—Cu1—N2—C10	9.3 (4)
O2—C11—C12—C13	178.0 (4)	N1—Cu1—N2—C10	-178.4 (4)
O1—C11—C12—C13	-3.5 (6)	O7—Cu1—N2—C10	-86.7 (4)
O2—C11—C12—C17	-3.9 (6)	C27—C28—N3—C24	1.3 (7)
O1—C11—C12—C17	174.6 (4)	C27—C28—N3—Cu2	-179.7 (4)
C17—C12—C13—C14	1.0 (6)	C25—C24—N3—C28	-0.4 (6)
C11—C12—C13—C14	179.1 (4)	C23—C24—N3—C28	177.9 (4)
C12—C13—C14—C15	-1.3 (6)	C25—C24—N3—Cu2	-179.4 (3)
C13—C14—C15—C16	0.8 (6)	C23—C24—N3—Cu2	-1.1 (4)
C13—C14—C15—C18	179.3 (4)	O3—Cu2—N3—C28	12.5 (4)
C14—C15—C16—C17	-0.1 (6)	05-Cu2-N3-C28	119.0 (5)
C18 - C15 - C16 - C17	-1785(4)	$N4-Cu^2-N3-C^{28}$	-1781(4)
C_{15} C_{16} C_{17} C_{17} C_{12}	-0.2(6)	$C_{11} = C_{11} = N_3 = C_{28}$	-822(4)
C_{13} C_{12} C_{17} C_{16}	-0.3(6)	$O_3 = C_{11}^2 = N_3 = C_{24}^2$	-1685(3)
$C_{11} = C_{12} = C_{17} = C_{16}$	-178 A (4)	$05 - Cu^2 - N^3 - C^2 4$	-62.1(5)
C14 $C15$ $C18$ $O4$	1/0.4(4)	$N_{4} = C_{12} = N_{3} = C_{24}$	02.1(3)
C16 C15 C18 O4	2.0(0)	N4 - Cu2 - N5 - C24	0.9(3)
C16 - C15 - C18 - O4	-1/8./(4)	$C11 - Cu_2 - N_3 - C_24$	90.8 (3)
C14 - C15 - C18 - O3	-1/5.1(4)	$C_{22} = C_{23} = N_4 = C_{19}$	1.0 (6)
03	3.3 (6)	C24—C23—N4—C19	-1/9.9 (4)
N4—C19—C20—C21	-1.5 (8)	C22—C23—N4—Cu2	-179.1 (3)
C19—C20—C21—C22	2.2 (7)	C24—C23—N4—Cu2	0.1 (4)
C20—C21—C22—C23	-1.4 (7)	C20—C19—N4—C23	-0.1 (7)
C21—C22—C23—N4	-0.2 (6)	C20—C19—N4—Cu2	180.0 (4)
C21—C22—C23—C24	-179.3 (4)	O3—Cu2—N4—C23	56.4 (7)
N4—C23—C24—N3	0.7 (5)	O5—Cu2—N4—C23	163.5 (3)

C22—C23—C24—N3	179.9 (4)	N3—Cu2—N4—C23	-0.5 (3)
N4—C23—C24—C25	178.9 (4)	Cl1—Cu2—N4—C23	-97.7 (3)
C22—C23—C24—C25	-1.9 (6)	O3—Cu2—N4—C19	-123.7 (6)
N3—C24—C25—C26	-0.8 (6)	O5—Cu2—N4—C19	-16.5 (4)
C23—C24—C25—C26	-178.9 (4)	N3—Cu2—N4—C19	179.4 (4)
C24—C25—C26—C27	1.0 (7)	Cl1—Cu2—N4—C19	82.2 (4)
C25—C26—C27—C28	-0.1 (8)	O2—C11—O1—Cu1	5.6 (7)
C26—C27—C28—N3	-1.1 (8)	C12-C11-O1-Cu1	-172.8 (2)
C2-C1-N1-C5	-0.1 (7)	O6—Cu1—O1—C11	-7.5 (4)
C2-C1-N1-Cu1	-177.4 (4)	N1—Cu1—O1—C11	-178.9 (4)
C4—C5—N1—C1	1.5 (6)	N2—Cu1—O1—C11	-123.5 (5)
C6—C5—N1—C1	-176.5 (4)	O7—Cu1—O1—C11	88.2 (4)
C4—C5—N1—Cu1	179.1 (3)	O4—C18—O3—Cu2	-5.3 (6)
C6—C5—N1—Cu1	1.0 (4)	C15—C18—O3—Cu2	172.4 (3)
O1—Cu1—N1—C1	-15.0 (4)	O5—Cu2—O3—C18	16.7 (4)
N2—Cu1—N1—C1	175.5 (4)	N3—Cu2—O3—C18	179.5 (4)
O7—Cu1—N1—C1	78.1 (4)	N4—Cu2—O3—C18	123.7 (6)
01—Cu1—N1—C5	167.7 (3)	Cl1—Cu2—O3—C18	-82.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
05—H5A…O4	0.85	2.00	2.534 (4)	120
O6—H6A···O2	0.86	1.91	2.511 (4)	126
O6—H6B···O8 ⁱ	0.86	2.34	3.079 (4)	145
O6—H6 <i>B</i> ···O10 ⁱ	0.86	2.14	2.923 (4)	151
O7—H7A···Cl1 ⁱⁱ	0.85	2.53	3.325 (2)	156
O7—H7 <i>B</i> ···O10 ⁱⁱⁱ	0.86	2.06	2.869 (3)	157
011—H11A···08	0.86	2.26	3.119 (3)	176
011—H11A····O9	0.86	2.42	3.038 (3)	129
O11—H11B····Cl1 ^{iv}	0.84	2.39	3.227 (2)	173

Symmetry codes: (i) *x*, *y*-1, *z*+1; (ii) *x*+1, *y*-1, *z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*, -*y*+2, -*z*+1.